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Abstract
The paper introduces the model confidence set (MCS) and applies it to the selection of

forecasting models. A MCS is a set of models that is constructed such that it will contain

the ’best’ forecasting model, given a level of confidence. Thus, a MCS is analogous to a

confidence interval for a parameter. The MCS acknowledges the limitations of the data,

such that uninformative data yields a MCS with many models, whereas informative data

yields a MCS with only a few models. We revisit the empirical application in Stock and

Watson (1999) and apply the MCS procedure to their set of inflation forecasts. Although

the MCS contains only a few models in the first subsample, there is little information in the

second post-1984 subsample, which results in a large MCS. Yet, the random walk forecast

is not contained in the MCS for either of the samples. This shows that the random walk

forecast is inferior to principal component-based inflation forecasts.
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Model Confidence Sets

1 Introduction

Which is the ‘best’ forecasting model? This question is onerous for most data to answer, espe-

cially when the set of competing models is large. Many applications will not yield a single model

that significantly dominates all competitors because the data is not sufficiently informative to

give a unequivocal answer to this question. Nonetheless, it is possible to reduce the set of models

to a smaller set of models — a model confidence set — that is guaranteed to contain the ‘best’

forecasting model, given a pre-specified level of confidence.

The objective of the model confidence set (MCS) procedure is to determineM∗ that consists

of the ‘best’ model(s) from a collection of models,M0, where ‘best’ is defined in terms of some

criterion that is user-specified. The MCS procedure yields a model confidence set, cM∗, which is

a set of models that is constructed such that it will contain the best models with a given level of

confidence. The MCS is constructed from sample information about the relative performances of

the models inM0. Thus, the MCS is a random data-dependent set of models that contains the

best forecasting model(s), as a standard confidence interval covers the population parameter.

An attractive feature of the MCS approach is that it acknowledges the limitations of the data.

Informative data will result in a MCS that contains only the best model. Less informative data

makes it difficult to distinguish between models and may result in a MCS that contains several

(possibly all the) models. Thus, the MCS differs from extant model selection criteria that choose

a single model without regard to the information content of the data. Another advantage is that

the MCS procedure makes it possible to make statements about significance that are valid in the

traditional sense. A property that is not satisfied by the commonly used approach of reporting

p-values from multiple pairwise comparisons. Another attractive feature of the MCS procedure

is that it allows for the possibility that more than one model can be the ‘best’, i.e., M∗ may

contain more than a single model.

The contributions of this paper can be summarized as follows: First, we introduce the model

confidence set and derive its theoretical properties. Second, we propose a practical implemen-

tation of the MCS procedure that is based on bootstrap methods. This implementation is

particularly useful when the number of objects to be compared is large. Third, the finite sam-

ple properties of the bootstrap MCS procedure are analyzed in simulation studies. Fourth, we

revisit the empirical application in Stock and Watson (1999) and apply the MCS procedure to

their set of inflation forecasts.
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1.1 Theory of Model Confidence Sets

We do not treat ‘models’ as sacred objects, nor do we assume that a particular model represents

the true data generating process. Models are evaluated in terms of their sample performance

that is specific to the criterion function that is employed, and the ‘best’ model is unlikely to

be the same for all criteria. Also, we use the term ‘model’ loosely. It can refer to a forecasting

model, method, or rule that need not involve any modelling of data. The MCS procedure is not

specific to comparisons of forecasting models. It can also be used to seek the ‘best’ among more

general objects. For example, one could construct a MCS for a set of different ‘treatments’ by

comparing sample estimates of the corresponding treatment effects.

A MCS is constructed from a collection of competing objects,M0, and a criterion for eval-

uating these objects empirically. The MCS procedure is based on an equivalence test, δM;

and an elimination rule, eM. The equivalence test is applied to the set of objects M = M0.

If δM is rejected, there is evidence that the models in M are not equally ‘good’ and eM is

used to eliminate an object with poor sample performance from M. This procedure is re-

peated until δM is ‘accepted’, and the MCS is now defined by the set of ‘surviving’ models.

The same significance level, α, is employed in all tests, which asymptotically guarantees that

P (M∗ ⊂ cM∗
1−α) ≥ 1−α, and in the case whereM∗ consists of one object we have the stronger

results that limn→∞ P (M∗ = cM∗
1−α) = 1. The MCS procedure also yields p-values for each of

the models. For a given model i ∈M0, the MCS p-value, p̂i, is the threshold at which i ∈ cM∗
1−α,

if and only if p̂i ≥ α. Thus, a model with a small MCS p-value makes it unlikely that model i is
one of the ‘best’ models (is a member ofM∗).

The idea behind the sequential testing procedure that we use to construct the MCS may be

recognized by readers who are familiar with the trace-test procedure of Anderson (1984). This

procedure that involves a sequential use of trace-tests is commonly used to select the number of

cointegration relations within the vector autoregressive model, see Johansen (1988). The way

that the MCS procedure determines the number of superior models is analogous to the way that

the trace-test is used to select the number of cointegration relations. We discuss this issue and

related testing procedures in Section 3.
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1.2 Forecasting Models

The focus of this paper is the multiple comparisons of forecasting models. In this context, the

equivalence test amounts to a test for equal predictive ability (EPA), such as those by Diebold

and Mariano (1995) and West (1996). The natural extension of these tests to the comparison of

multiple forecasting models leads to quadratic-form tests, such as that of West and Cho (1995).

These tests require an estimate of a covariance matrix that has a dimension that is proportional

to the number of models. Estimation of this covariance matrix can be difficult when the number

of models inM0 is large. For this reason, we consider alternative tests that are based on simple

t-statistics, because these do not require an estimate of the covariance matrix.

Several papers have studied the problem of selecting the best forecasting model from a set of

competing models. For example, Engle and Brown (1985) compare selection procedures that are

based on six information criteria and two testing procedures (‘general-to-specific’ and ‘specific-

to-general’), Sin and White (1996) analyze information criteria for possibly misspecified models,

and Inoue and Kilian (2003) compare selection procedures that are based on information criteria

and out-of-sample evaluation. Granger, King, and White (1995) argues that the general-to-

specific selection procedure is based on an incorrect use of hypothesis testing, because the model

chosen to be the null hypothesis in a pairwise comparison is unfairly favored. This is particularly

problematic when the data set under investigation does not contain much information, which

makes it difficult to distinguish between models.

The MCS procedure does not assume that a particular model defines the null hypothesis.

Instead, all models are treated equally in terms of their sample performance, and in the context

of forecasting models, these are evaluated through their out-of-sample predictive ability. We

make no attempt to justify that forecasts should be evaluated in terms of their out-of-sample

predictive ability. For a critical views on this issue, see Clements (2002) and Inoue and Kilian

(2002).

1.3 Bootstrap Implementation and Simulation Results

We propose a bootstrap implementation of MCS procedure that is very convenient when the

number of models is large. The bootstrap implementation is simple to use in practice and avoids

the need to estimate a high-dimensional covariance matrix. White (2000b) is the source of many

of the ideas that underlies our bootstrap implementation.
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We study the properties of our bootstrap implementation of the MCS procedure though

simulation experiments. The results are very encouraging as the best model does end up in the

MCS at the appropriate frequency, and the MCS procedure does have power to weed out all the

poor models when the data contains sufficient information.

1.4 Empirical Analysis of Inflation Forecasts

We apply the MCS to the problem of forecasting inflation. The tradition of the Phillips curve

suggests it remains a useful vehicle for this task. Stock and Watson (1999) make the case that

a reasonable specified Phillips curve is the best tool for forecasting inflation; also see Gordon

(1997), Staiger, Stock, and Watson (1997), and Stock and Watson (2003). Atkeson and Ohanian

(2001) conclude that this is not the case because they find it is difficult for any of the Phillips

curves they study to beat a random walk in out-of-sample point prediction.

Our empirical analysis is based on the same data as Stock and Watson (1999), and we par-

tition the evaluation period in the same two subsamples as did Stock and Watson (1999). The

main advantage of the MCS procedure in this context is that it allows us to make statements

about significance that are valid, in the traditional sense. This property is difficult to achieve

using the traditional approach of making multiple pairwise comparisons. The problem is par-

ticularly severe when the comparisons are made with reference to a benchmark that is selected

based on information from the same set of data.

There are several interesting results of our analysis. Since the first subsample covers a period

with large changes in the rate of inflation, this sample is expected to be relatively informative

about which model might be the best forecasting models. Indeed, the MCS consists only of a

few models, so the MCS proves to be effective at weeding out the inferior forecasts. The second

subsample is a period with low and relatively stable inflation, and this sample contains relatively

little information about which of the forecasting models that might be the best forecasts. In

spite of the relatively low degree of information, we are able to conclude that the simple random

walk forecast is indeed inferior to other forecasts, and the performance difference is significant.

This conclusion can be made because the random walk forecasts never ends up in the MCS.

Although we cannot point to a single models as the ‘significantly best’ forecasting models, we

do find that the index-based forecasts of Stock and Watson (2002a, 2002b) generally perform

quite well.

The paper is organized as follows. Section 2 presents the theoretical framework for the MCS.
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Some theoretical aspects of the MCS procedure are discussed in Section 3, where we emphasize

similarities and differences to some existing methods for multiple comparisons (of forecasting

models). The results of simulation experiments are discussed in Section 4. The next section

applies the MCS to the problem of inflation forecasting and reports the outcome. Section 6

concludes.

2 Theory for General Confidence Set

In this section, we discuss the theory of model confidence sets for general objects. Our leading

example concerns the comparison of forecasting model. Nevertheless, we do not make specific

references to ‘models’ in the first part of this section, in which we lay out the general theory.

We consider a set, M0, that contains a finite number of objects (forecasting models) that

are indexed by i = 1, . . . ,m. The objects are evaluated over the sample t = 1, . . . , n, in terms

of a loss function and we denote the loss that is associated with model i in period t as Li,t.

We define the relative performance variables

dij,t ≡ Li,t − Lj,t, for all i, j ∈M0,

and make the following assumption.

Assumption 1 {dij,t}i,j∈M0
is strictly stationary and E|dij,t| <∞ for all i, j ∈M0.

It is worthwhile to note that {Li,t} is not required to be stationary or ‘well-behaved’ as long
as the relative performance variables that are used for the comparisons satisfies Assumption 1.

Thus, the assumption allows for structural breaks and other aspects that may cause {Li,t} to
be non-stationary, as long as all objects ofM0 are affected in a ‘similar’ way that preserves the

stationarity of dij,t.

Definition 1 Let Assumption 1 hold. The set of superior objects is defined by

M∗ ≡ {i ∈M0 : E(dij,t) ≤ 0 for all j ∈M0}.

In the following we letM† denote the complement toM∗, i.e. M† ≡ {i ∈M0 : E(dij,t) > 0

for some j ∈M0} and we use i∗ and i† to represent typical elements ofM∗ andM†, respectively.
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The objective of the MCS procedure is to determine M∗. This is done through a sequence

of significance tests, where objects that are found to be significantly inferior to other elements

ofM0 are eliminated. The hypotheses that are being tested take the form:

H0,M : E(dij,t) = 0 for all i, j ∈M, (1)

where M ⊂ M0. We denote the alternative hypothesis (E(dij,t) 6= 0 for some i, j ∈ M) by

HA,M. Note that H0,M∗ is always true given our definition ofM∗, whereas H0,M is always false

ifM contains elements from bothM∗ andM†.

As stated in the introduction, the MCS procedure is based on an equivalence test, δM, and

an elimination rule, eM. The equivalence test, δM, is used to test the hypothesis H0,M for any

M ⊂M0,
1 and eM identifies the object ofM that is to be removed fromM, in the event that

H0,M is rejected.

Definition 2 (MCS Algorithm) Step 0: Initially set M = M0. Step 1: Test H0,M using

δM at level α. Step 2: If H0,M is ‘accepted’ we define the cM∗
1−α =M, otherwise we use eM to

eliminate objects fromM and repeat the procedure beginning with Step 1.

The set, cM∗
1−α, which consists of the set of ‘surviving’ objects (those that survived all

tests without being eliminated) is referred to as the model confidence set. Theorem 1 that is

presented below shows that the term ‘confidence set’ is appropriate in this context, provided

that the equivalence test and the elimination rule satisfies the following assumption.

Assumption 2 For any M ⊂M0 we assume the following about (δM, eM): (a) lim supn→∞

P (δM = 1|H0,M) ≤ α; (b) limn→∞ P (δM = 1|HA,M) = 1; and (c) limn→∞ P (eM ∈M∗|HA,M) =
0.

Assumption 2 is standard. (a) requires the asymptotic level not to exceed α; (b) requires

the asymptotic power to be one; whereas (c) requires that a superior object i∗ ∈ M∗ is not

eliminated (as n→∞) as long as there are inferior models inM.

Theorem 1 (Properties of MCS) Given Assumption 2, it holds that (i) limn→∞ P (M∗ ⊂cM∗
1−α) ≥ 1− α, and (ii) limn→∞ P (i† ∈ cM∗

1−α) = 0 for all i† ∈M†.
1We let δM = 0 and δM = 1 correspond to the cases where H0,M are ‘accepted’ and ‘rejected’ respectively.
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Proof. To prove (i) we consider the event that i∗ ∈M∗ is eliminated fromM. From Assumption

2.c it follows that P (δM = 1, eM = i∗|HA,M) ≤ P (eM = i∗|HA,M) → 0 as n → ∞, and
Assumption 2.a shows that P (δM = 1, eM = i∗|H0,M) = P (δM = 1|H0,M) ≤ α. To prove (ii),
we first note that limn→∞ P (eM = i∗|HA,M) = 0 such that only poor models will be eliminated
(asymptotically) as long as M ∩M† 6= ∅. On the other hand, Assumption 2.b ensures that
models will be eliminated as long as the null hypothesis is false.

Econometricians often worry about the properties of sequential testing procedures, because

these can ‘build-up’ Type I errors, and result in unfortunate properties, see e.g. Leeb and

Pötscher (2003). The MCS procedure does not suffer from this problem, because the cM∗
1−α

is determined after the first ‘acceptance’. Thus, a single null hypothesis is accepted, such that

the familywise (Type I) error rate is bounded by the level of the test that was accepted! On

the other hand, the MCS procedure exploits the fact that the power converges to unity as the

sample size increases, such that all inferior models are (eventually) eliminated. In the event that

the test lacks power the MCS procedure may result in a Type II error, in the sense that the

MCS is ‘too large’ and will contain models from M†. We view this as a strength of the MCS

procedure because the lack of power is tied to the lack of information in the data. It is only

appropriate that the MCS is large when the data does not contain sufficient information to tell

the good and bad models apart.

When there is only a single model that is the best model (M∗ consists only of one model),

we obtain a stronger result.

Corollary 2 Suppose that Assumption 2 holds and that M∗ is a singleton, M∗ = {i∗}. Then
limn→∞ P (M∗ = cM∗

1−α) = 1.

Proof. This follows because i∗ will be the last surviving model with probability one. Thus, this

model is never eliminated asymptotically.

2.1 MCS p-Values

Next, we introduce the MCS p-values. Let m0 denote the number of elements in M0, and

order, for simplicity, the elements M0 = {i(1), . . . , i(m0)} such that i(k) = eM(k)
for M(k) =

{i(1), . . . , i(k)}. Thus, i(m0) = eM0 is the first model to be eliminated in the event that δM0 is

rejected, i(m0−1) the next model, etc.
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Definition 3 (MCS p-values) Let p(k) be the p-value of δM(k)
where M(k) = {i(1), . . . , i(k)}

for k = 2, . . . ,m0, and use the convention p(1) ≡ 1. The MCS p-value of j = i(j) ∈ M0 is

defined by p̂j ≡ maxk≥i(j) p(k).

The MCS p-values are convenient because they make it easy to determine whether a partic-

ular object is in cM∗
1−α. [Discussion of p-values].

Theorem 3 The MCS p-value, p̂i, is such that i ∈ cM∗
1−α if and only if p̂i ≥ α, for any i ∈M0.

Proof. Suppose that p̂i < α and let i(k) ≡ i. Since p̂i = maxj≥k p(j) it follows that the tests,
δ(k), . . . , δ(m0), are all rejected at significance level α. Hence, the first accepted hypothesis (if

any) occurs after i = ei(k) has been eliminated. This proves that p̂i < α implies i /∈ cM∗
1−α.

Suppose now that p̂i ≥ α. Then for some k ≥ i it holds that p̂k ≥ α, such that H0,M(k)
is

accepted at significance level α. Similarly we conclude that p̂i ≥ α implies that i ∈ cM∗
1−α,

which completes the proof.

2.2 Equivalence Tests and Elimination Rules

Now we consider specific equivalence tests and an elimination rule that satisfy Assumption 2.

We shall make the following assumption that is sufficiently strong, such that the tests can be

implemented by bootstrap methods.

Assumption 3 For some r > 2 and δ > 0 it holds that E|dij,t|r+δ <∞ for all i, j ∈M0, and

that {dij,t}i,j∈M0 is α-mixing of order −r/(r − 2).

LetM be some subset ofM0 and let m be the number of models inM = {i1, . . . , im}. We
define the vector of loss-variables, Lt ≡ (Li1,t, . . . , Lim,t)0, t = 1, . . . , n, and its sample average,
L̄ ≡ n−1Pn

t=1Lt, and we let ι ≡ (1, . . . , 1)0 be the column vector where all m entries equal one.

The orthogonal complement to ι, is an m× (m− 1) matrix, ι⊥, that has full column rank and
satisfies ι0⊥ι = 0 (an vector of zeros). The m− 1 dimensional vector Xt ≡ ι0⊥Lt can be viewed
as m− 1 contrasts, because each element of Xt is a linear combination of dij,t, i, j ∈M, which

has mean zero under the null hypothesis.

Lemma 4 Given Assumption 1, let Xt ≡ ι0⊥Lt and define µ ≡ E(Xt). The null hypothesis

H0,M is equivalent to µ = 0 and given Assumption 3 it holds that n1/2(X̄−µ) d→ N(0,Σ), where

X̄ ≡ n−1Pn
t=1Xt and Σ ≡ limn→∞ var(n1/2X̄).
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Proof. First note that Xt = ι0⊥Lt can be written as a linear combination of dij,t, i, j ∈M0,

since ι0⊥ι = 0. Thus H0,M is given by µ = 0, and the asymptotic normality follows by the central

limit theorem for α-mixing processes, see e.g. White (2000a).

Lemma 4 shows that H0,M can be tested using traditional quadratic-form tests, such as

those that are based on the test statistics

TQ ≡ nX̄ 0Σ̂#X̄ and TF ≡ n− q
q(n− 1)TQ,

where Σ̂ is some consistent estimator of Σ, q ≡ rank(Σ̂), and Σ̂# denotes the Moore-Penrose

inverse of Σ̂.2 , 3 Here q denotes the effective number of contrasts under H0,M, and since Σ̂
p→ Σ

(by assumption) it follows that TQ
d→ χ2(q) and TF

d→ F(q,n−q), where χ2(q) denotes the χ
2-

distribution with q degrees of freedom and F(q,n−q) is the F -distribution with (q, n−q) degrees of
freedom (Fq,∞ = χ2q/q in the limit). Under the alternative hypothesis, HA,M, TQ and TF diverge

to infinity with probability one. Thus, the test δM will meet the requirements of Assumption 2,

when constructed from either of the statistics TQ or TF .

An empirical problem arises when the number of elements, m, become large relative to the

sample size, n. In this case, it is useful to consider alternative tests that do not require an

estimate of the (m− 1)× (m− 1) covariance matrix, Σ. Such tests can be constructed from the

t-statistics

tij =
d̄ijqcvar(d̄ij) and ti· =

d̄i·pcvar(d̄i·) , for i, j ∈M,

where we have defined d̄ij ≡ n−1
Pn
t=1 dij,t and d̄i· ≡ m−1

P
j∈M d̄ij , and cvar(d̄ij) and cvar(d̄i·)

denote estimates of var(d̄ij) and var(d̄i·) respectively. The variable d̄ij measures the sample loss

differential between model i and j, whereas d̄i· is a contrast of model i’s sample loss to that of

the average across all models. The latter can be seen from the identity d̄i· = (L̄i − L̄·), where
L̄i ≡ n−1

Pn
t=1 Li,t and L̄· ≡ m−1

P
i∈M L̄i.

2Note that the matrix ι⊥ is not fully identified (the space spanned by the columns of ι⊥ is). However, this

does not create any problems for the tests that are based on TQ and TF , because these statistics are invariant to

the choice for ι⊥.
3Under the additional assumption that {dij,t}i,j∈M is uncorrelated (across t), we can use Σ̂ = n−1

Pn
t=1(Xt−

X̄)(Xt− X̄)0, whereas in the case with autocorrelation one can use a robust estimator such as that of Newey and
West (1987). The test based on TQ in combination with (asymptotic) critical values from χ2(q), was first used by

West and Cho (1995).
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The null hypothesis, H0,M, is equivalent to E(d̄i·) = 0 for all i ∈ M, (and equivalent to

E(d̄ij) = 0 for all i, j ∈ M by definition). Test statistics, such as TD ≡ P
i∈M t2i·, TR ≡

maxi,j∈M |tij |, and TSQ =
P
i,j∈M t2ij, can be used to test the hypothesis H0,M. The subscripts

refer to deviation (from common average), range, and semi-quadratic, respectively. This paper

focuses on the test statistic, TD, because it involves the fewest pairwise comparisons, m, as

opposed to the m(m− 1) comparisons that TR and TSQ involve.4

The asymptotic distributions of the test statistics, TD, TR, and TSQ, are non-standard be-

cause they depend on nuisance parameters. However, this poses no obstacle as their distributions

are easily estimated using bootstrap methods that implicitly solve the nuisance parameter prob-

lem. This feature of the bootstrap has previously been used in this context by Killian (1999),

White (2000b), Hansen (2001), and Hansen (2003b), and Clark and McCracken (2003).

Besides an equivalence test, we need an elimination rule, eM, that meets the requirement

of Assumption 2. When the test statistic, TD, is used, the natural elimination rule is eM ≡
argmaxi ti·, because it removes the model that contributes most to the test statistic, TD, among

the models with a sample performance that is worse than the average across models. In fact,

eM selects the object that has the largest standardized excess loss, relative to the average across

all models inM.

Next, we derive some intermediate results that are used to prove that the MCS, which is

based on TD and eM = argmaxi ti·, satisfies the necessary requirements of Assumption 2.

Lemma 5 Suppose that Assumptions 1 and 3 hold and define Z̄ = (d̄1·, . . . , d̄m·)0. Then

n1/2(Z̄ − ψ) d→ Nm(0,Ω), as n→∞, (2)

where ψ ≡ E(Z̄) and Ω ≡ limn→∞ var(n1/2Z̄). The null hypothesis, H0,M, corresponds to ψ = 0.

Proof. From the identity d̄i· = L̄i − L̄· = L̄i − m−1
P
j∈M L̄j = m−1

P
j∈M(L̄i − L̄j) =

m−1
P
j∈M d̄ij, we see that the elements of Z̄ are linear transformations of X̄ from Lemma 4.

Thus for some (m−1)×mmatrixGwe have Z̄ = G0X̄, and the result now follows, where ψ = G0µ
and Ω = G0ΣG. (The m×m covariance matrix, Ω, has reduced rank, as rank(Ω) ≤ m− 1.)

In the following, we let % denote them×m correlation matrix that is implied by the covariance
matrix, Ω, of Lemma 5. Further, from a vector of random variables, ξ ∼ Nm(0, %), we let F%

4The MCS procedure of the present paper has been applied to volatility models by Hansen, Lunde, and Nason

(2003) who also provide some simulation results for the statistics TR and TSQ.
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denote the distribution of ξ0ξ. Note that each of the elements of ξ have a standard normal

distribution, so that FIm = χ
2
(m) for the special case where % = Im. This follows from the fact

that ξ2i ∼ iidχ2(1) when % = I such that ξ0ξ =
Pm
i=1 ξ

2
i ∼ χ2(m) = FIm .

Theorem 6 Let Assumptions 1 and 3 hold, and suppose that ω̂2i ≡ cvar(n1/2d̄i·) = n cvar(d̄i·) p→
ω2i , where ω

2
i , i = 1, . . . ,m are the diagonal elements of Ω. Under H0,M, it holds that TD

d→ F%

and under the alternative hypothesis, HA,M, it holds that TD →∞ in probability.

Proof. Let D ≡ diag(ω21, . . . ,ω
2
m) and D̂ ≡ diag(ω̂21, . . . , ω̂

2
m). From Lemma 5 it follows

that ξn = (ξ1,n, . . . , ξm,n)
0 ≡ D−1/2n1/2Z̄ d→ Nm(0, %), since % = D−1/2ΩD−1/2. From ti·

= d̄i·/
pcvar(d̄i·) = n1/2d̄i·/ω̂i = ξin

ωi
ω̂i
it now follows that TD =

P
i∈M t2i· = Z̄0D̂−1Z̄ =

ξ0n(DD̂−1)ξn
d→ F%, since DD̂−1

p→ Im and ξ0nξn
d→ F%. Under the alternative hypothesis there

exist an j ∈ M, such that d̄j·
p→ c 6= 0. Thus, t2j· diverges at rate n1/2 and TD at rate n in

probability.

Theorem 6 shows that the asymptotic distribution of TD depends on the correlation matrix,

which makes % is a nuisance parameter in this testing problem. Nonetheless, as we have dis-

cussed earlier, we can solve this nuisance parameter problem by using bootstrap methods. Our

bootstrap implementation produces a consistent estimate of TD’s distribution for all values of %.

Note that there might be an even better model outside the set of ‘candidate models’, M0.

Although the quest for the ‘best of all models’ is an interesting problem, it is a difficult one.

One aspect of this problem that is important to acknowledge is that statements about models

outside M0 hinge on untestable assumptions, unless one has sample information about these

models. If one has sample information about additional models one can, in principle, include

these models inM0 and derive the MCS for the larger set of candidate models.

2.3 MCS for Forecasting Models

In this subsection we consider some issues that are relevant when the MCS procedure is applied

to out-of-sample evaluation of forecasting models.

Parameter estimation can play an important role in the evaluation and comparison of fore-

casting models. Specifically, when nested models are being compared and the parameters es-

timated using certain estimation schemes, the limit distribution of our test statistic need not

be Gaussian, see West and McCracken (1998) and Clark and McCracken (2001). The prob-

lem is that Assumptions 1 and 3 do not hold in this instance. Some of these problems can be

12



Model Confidence Sets

avoided by using a rolling window (of the sample) for the parameter estimation, which is the

approach taken by Giacomini and White (2003). Alternatively one can estimate the parameters

once (using data that are dated prior to the evaluation period) and then compare the forecasts

conditional on these parameter estimates. However, the MCS should be applied with caution

when forecasts are based on estimated parameters because our assumptions need not hold in this

case. E.g. modifications are needed in the case with nested models, see e.g. Chong and Hendry

(1986), Harvey and Newbold (2000), Corradi and Swanson (2001), and Clark and McCracken

(2001). The key modification that is needed to accommodate the case with nested models, is

to make a proper choice for δM. Given a proper choice for δM and eM the general (sequential)

testing principle that is used to generate the MCS remains. However, in this paper we will not

pursue this important generalization further.

3 Relation to Some Existing Empirical Procedures

In the introduction, we discussed the relation between the MCS procedure and trace-test pro-

cedure that is used to select the number of cointegration relations, see Johansen (1988). The

underlying testing principle that both the MCS procedure and the trace-test procedure is based

on, is known as intersection-union testing (IUT) that was formalized by Berger (1982). See also

Pantula (1989) who applied IUT to select the lag-length and order of integration in univariate

autoregressive processes.

Another way to cast the MCS problem is as a multiple comparisons problem. Problems of

multiple comparisons have a long history in the statistics literature, see Gupta and Panchapake-

san (1979), Hsu (1996) and references therein. Result from this literature has recently been

adopted in the econometrics literature. One problem is that of multiple comparisons with best,

where objects are compared to that with the ‘best’ sample performance. Statistical procedures

formultiple comparisons with best are discussed and applied to economic applications by Horrace

and Schmidt (2000). Another related problem is the case where the benchmark, to which all

objects are compared, is selected independent of the data used for the comparison. This prob-

lem is known as multiple comparisons with control, and this is the testing problem that arises in

the reality check for data snooping by White (2000b) and the test for superior predictive ability

(SPA) by Hansen (2001).

The MCS has several advantages over the tests for superior predictive ability (SPA), see
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White (2000b) (reality check) and Hansen (2001). The tests for SPA are designed to address

whether a particular forecasting model (the benchmark) is significantly outperformed by any

model from a competing set of models. Whereas a SPA-test requires a benchmark to be specified,

the MCS procedure is ‘benchmark free’. This is particular convenient in applications without a

natural benchmark. In the situation, where there is a natural benchmark, the MCS procedure

can still address the same objective as that of the SPA tests. This is done by observing whether

the designated benchmark is in the MCS or not, where the latter correspond to a rejection of

the null hypothesis that is tested by a SPA test.

The MCS procedure has the advantage that it can be used for model selection, whereas the

SPA tests are ill-suited for this problem. When the SPA test is rejected, there is little guidance

about which set of models that are the possible best models, because the SPA test only identifies

one model as significantly better.5 We are faced with a similar problem in the event that the

null hypothesis is not rejected by the SPA test. In this case, the benchmark may be the best

model, but this may also apply to several other models. The repeated use of SPA-tests where

all models are used as the benchmark one-by-one is not a valid statistical procedure, unless the

individual tests are adjusted for the number of tests that are made. The MCS procedure does

not suffer from such problems because it implicitly controls the familywise error rate.

Finally, the null hypothesis when testing for SPA is a composite hypothesis that are defined

from several inequality constraints. Since it is unclear how many of these inequalities bind under

the null hypothesis, it becomes difficult to control the Type I error rate. For this reason, a SPA

test can be quite conservative and have low power, see Hansen (2003a). In comparison, the MCS

procedure is based on a sequence of hypotheses tests that only involves equalities, which avoids

the composite hypothesis testing problem.

3.1 Bayesian Interpretation

The MCS procedure is entirely based on frequentist principles, but resembles some Bayesian pro-

cedures. By specifying a prior over the models inM0, a Bayesian procedure can derive posterior

probabilities for each of the models. These can be used to construct a Bayesian confidence set

by including the models with the largest posteriors until the posteriors add up to at least 1−α.
5Romano and Wolf (2003) impoves upon the SPA test and are able to identify a set of models that significantly

dominate the benchmark. However, these models may be significantly different in terms of their performance.

Thus this set has no direct relation to the MCS.
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Because MCS relies entirely on sample information, it bypasses the need to place priors on the

models and their parameters. Note that the Bayesian notion of assigning probabilities to models

is not meaningful in a frequentist setting. Instead, our probability statement is associated with

the MCS, which is a random data-dependent set of models. Therefore, it is meaningful to say

that the best model can be found in the MCS with a certain probability.

4 Simulation Experiments

We consider two designs that are based on the m-dimensional vector,

µ =
λ√
n
(0, 1

m−1 , . . . ,
m−2
m−1 , 1)

0,

that defines the relative performances, as we ensure that E(dij,t) = µi − µj. So our simulations
are such thatM∗ consists of a single element, unless λ = 0, in which case we haveM∗ =M0.

The covariance structure is primarily defined by

Xt ∼ iidNm(0,Σ), where Σij =

 1 for i = j,

ρ for i 6= j, for some 0 ≤ ρ ≤ 1.

Design I: In this design we define the (vector of) loss variables to be

Lt ≡ µ+ at√
E(a2t )

Xt, where at = exp(yt), yt =
−ϕ

2(1 + ϕ)
+ ϕyt−1 +

√
ϕεt,

and εt ∼ iidN(0, 1). This implies that E(yt) = −ϕ/[2(1− ϕ2)] and var(yt) = ϕ/(1− ϕ2), such
that E(at) = exp[E(yt) + var(yt)/2] = exp[0] = 1, and var(at) =

¡
exp[ϕ/(1− ϕ2)]− 1¢ . Further

E(a2t ) = var(at) + 1 = exp(ϕ/(1− ϕ2)) such that var(Lt) = 1. Note that ϕ = 0 corresponds to
homoskedastic errors and ϕ > 0 corresponds to (GARCH-type) heteroskedastic errors.

For our simulations we select λ = 0, 5, 10, 20, ρ = 0.00, 0.50, 0.75, 0.95, ϕ = 0.0, 0.5, 0.8,

m = 10, 40, 100 with 2, 500 repetitions. We use the block-bootstrap using blocks with length

l = 2 and our results are based on B = 1, 000 resamples. Finally, we use n = 250 as the sample

size, because this is in the order of magnitude that is common in empirical studies of macro

economic variables.

We report two statistics from our simulation experiment. One is the frequency at whichcM∗
90% containsM∗ and the other is the average number of models in cM∗

90%. The former shows

the ‘size’ properties of the MCS procedure and the latter is informative about the ‘power’ of the

procedure. So our simulation results are based on α = 10%.
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[Table 1 about here]

The results reported in Table 1 show that the properties of the MCS procedure are as

could be expected.6 The frequency that the best models are contained in the MCS is virtually

always greater than (1−α), and the MCS becomes better at separating the inferior models from
the superior model, as E(dij,t) increases (as λ increases). Further we also note that a strong

correlation makes it easier to separate inferior models from superior model. This is not surprising

because var(dij,t) = var(Lit)+var(Ljt)−2cov(Lit, Ljt) = 2(1−ρ) which is decreasing in ρ. Thus a
stronger correlation (holding the individual variances fixed) is associated with more information

that makes is easier to separate good from bad models. Finally, the effect of heteroskedasticity

are relatively small, but the heteroskedasticity does appear to add power to the MCS procedure,

as the average number of models in cM∗
90% tends to fall as ϕ is increased.

When λ > 0 we have a situation whereM∗ only contains one model. So the consistency result

of Corollary 2 applies in this case, and we do indeed observe that cM∗ =M∗ in a large number

or simulations. For example when both of our statistics equal one, it shows that cM∗ =M∗ is

all our simulations for that particular configuration.

Design II: (MSE-type loss). In this design, we generate the individual loss variables

Lit = (2
− 1
4Xit +

√
µi)

2, i = 1, . . . ,m and t = 1, . . . , n,

such that E(Lit) = 1/
√
2 + µi, and var(Lit) = 1 + 2

√
2µi. So like in Design I we have that

E(dij,t) = µi − µj , whereas the variance of Lit is now increasing in µi, making the worst per-
forming models the most volatile models.

We simulate this design with the same configurations as those for Design I, except that the

parameter, ϕ, is not used in this design.

[Table 2 about here]

The results for Design II are reported in Table 2. Here the frequency at which the best

models are contained in the MCS is somewhat smaller than it was the case for Design I. In fact,

the estimated frequency is less than 90% in some cases where λ = 0, which indicates a minor

small-sample size distortion (the simulation result are based on n = 250). The small sample
6All the calculations made in this paper are based on software written by the authors using the Ox language

of Doornik (2001).
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distortion is likely caused by the non-Gaussian distribution that d̄ij has in this design. Again,

we see that MCS becomes better at separating the inferior models from the superior model as

E(dij,t) increases (as λ increases), and an increased correlation also adds power to the MCS

procedure, as was the case in Design I.

5 Empirical Application to US Inflation Forecasts: Stock &

Watson (JME, 1999) Revisited

This section revisits the Stock and Watson (1999) empirical application that pairwise compares

a large number of inflation forecasting models, including several that have a Phillips curve type

specification.

The Stock and Watson (1999) forecasting inflation-data set measure inflation, πt, as the

CPI-U, all items (PUNEW ) and the personal consumption expenditure implicit price deflator

(GMDC ). Their Phillips curve is

πt+h − πt = φ + β(L)ut + γ(L)(1− L)πt + et+h (3)

where ut is the unemployment rate, L is the lag polynomial operator (e.g., Lut = ut−1 ), and

et+h is the long-horizon inflation forecast innovation. Note that the natural rate hypothesis is

not imposed on this Phillips curve (3) and that inflation as a regressor variable is in its first

difference. Besides the Phillips curve (3), Stock and Watson forecast inflation with a range of

models, where unemployment is replaced with different macro variables that are labeled xt.7

The entire sample runs from 1959:m1 to 1997:m9. The first observation used in the regressions

is 1960:m2, and the period over which simulated out-of-sample forecasts are computed and

compared is 1970:m1 through 1996:m9.

We compute the MCS across all of the Stock and Watson inflation forecasting models. This

includes the Phillips curve model and the models that run through all of the macro variables that

Stock and Watson consider, a random walk model, and a univariate pth-order autoregressive

model, AR(p). Stock and Watson also present results with bivariate and multivariate forecast

combinations and with indicator variables constructed using principal component decomposi-

tions. Our analysis employs their complete collection of models and variables.
7See Stock and Watson (1999) for details about their modeling strategy and data set.
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Tables 3-4 consist (of the level) of the root mean square error (RMSE) and MCS p-values

of the Stock and Watson forecast inflation models. The first column of tables 3-4 also lists the

transformation of the macro variable xt in forecasting equation

πt+h − πt = φ + β(L)xt + γ(L)(1− L)πt + et+h. (4)

Stock and Watson study the properties of their inflation forecasting models on the subsamples

1970:m1 - 1983:m12 and 1983:m1 - 1996:m9. The former subsample contains the great inflation

of the 1970s and the substantial disinflation of the early 1980s. Inflation does not exhibit this

behavior in the later subsample. Rather than an increase and then decrease in inflation, an

important feature of the latter 1980s and first-half of the 1990s is a disinflation at the lower

frequencies.

[Table 3 about here]

Our Table 3 matches table 2 of Stock and Watson (1999, pp. 303-304).8 The RMSEs and

the p-values for the Phillips curve forecasting model (3) appear in the bottom row of our Table

3. The results for the random walk and AR(p) are the first two rows of the table, respectively.

The rest of the rows of Table 3 are the “gap” and first difference specifications of Stock and

Watson’s aggregate activity variables.9 There is a total of 18 models.

A glance at Table 3 reveals that the MCS of subsamples 1970:m1 - 1983:m12 and 1984:m1 -

1996:m9 are strikingly different. The MCS of the former subsample contains only five forecasting

models for PUNEW and just one model for GMDC at the 90 percent level, cM∗
90%.

10 Only four

of the 18 forecasting models fail to enter into cM∗
90% either for PUNEW or for GMDC based on

the 1984:m1 - 1996:m9 subsample. Thus, the earlier sample possesses useful information to tell

the forecast apart, whereas the later sample is less informative.

Another intriguing feature of Table 3 is the models that reside in the MCS of the 1970:m1 -

1983:m12 subsample. The five models that are in PUNEW -cM∗
90% are driven by macro variables

related either to the labor market or to real economic activity. The labor market variables are

lpnag, the first difference of employees on nonagricultural payrolls, and dlhur, the first difference
8 In this paper we present tables that corresponds to tables 2 and 4 of Stock and Watson (1999). The tables

with results that corresponds to Stock and Watson (1999, tables 3, 5 and 6) are available upon request.
9The “gap” is a one-sided Hodrick and Prescott (1997) filter of the relevant variable. See Stock and Watson

(1999, p. 301) for details.
10Members ofM∗

1−α are listed by their MCS p-values being greater than or equal to α.
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of the unemployment rate, all workers 16 years and older. Thus, there is labor market infor-

mation that is important for predicting inflation. This is consistent with traditional Keynesian

measures of aggregate demand; see Solow (1976).

Three specifications of forecasting equation (4) that are in PUNEW -cM∗
90% include three real

quantity variables. These models employ the variables gmpyq, real personal income, and msmtq,

real manufacturing and trade, total, are embraced by PUNEW -cM∗
90%. The former variable is

the only variable that is included in GMDC -cM∗
90%. The only “gap” specification that ends up

in PUNEW -cM∗
90% is hsbp, (the natural log of) building permits for new private housing starts.

These variables can be construed as signals about the anticipated path either of real aggregate

demand or real aggregate supply.

The last inference we draw from Table 3 is a rejection of the random walk forecasting model

for PUNEW and GMDC . This is contrary to Atkeson and Ohanian (2001). They report that

the Phillips curve models “cannot beat a random walk”, a result that is reminiscent of famous

work by Meese and Rogoff (1983). We find conclusive evidence that the random walk inflation

forecasts are inferior to other inflation forecasting model specifications. The MCS p-values for the

random walk forecasting model are all very small (all are less than 0.015), which is consistent

with table 3 of Stock and Watson (1999). Thus, we agree with Stock and Watson that the

Phillips curve is a device that helps to forecast inflation.

[Table 4 about here]

Table 4 generates MCSs of inflation forecasting models using multivariate forecasting tech-

niques, which replicates Table 4 of Stock and Watson (1999, pp. 318-319). They combine a large

set of inflation forecast from an array of 168 models using sample means, sample medians, and

ridge estimation to produce these forecast weighting schemes. The other multivariate forecasting

approach depends on principal components of the 168 macro-predictors. The idea is that there

exists an underlying factor or factors (e.g., real aggregate demand, financial conditions) that

summarize the information of a large set of predictors. For example, Solow (1976) argues that

a motivation for the Phillips curves of the 1960s and 1970s was that unemployment captured,

albeit imperfectly, the true unobserved state of real aggregate demand.

Multivariate forecasting of inflation yields results consistent with those of our table 3. The

earlier subsample contains information that enables the MCS to distinguish between competing

specifications, unlike the latter subsample. Table 4 shows that all specifications, but the random
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walk model, is covered by the MCS during the 1984:m1 - 1996:m9 subsamples. Thus, we continue

to find that the random walk model forecasts poorly on the 1970:m1 - 1983:m12 and 1984:m1

- 1996:m9 subsamples, relative to other models. This is the case for both measures of inflation

(PUNEW and GMDC ), see of Table 4.

Only the multi-factor and one-factor specifications for ‘all indicators’ and ‘real activity in-

dicators’ appear in the MCS of PUNEW at the 90 percent level in the 1970:m1 - 1983:m12

subsample. Table 4 shows that the MCS of GMDC is larger in this case, as the cM∗
90% contains

the entire collection of specifications for ‘all indicators’ and ‘real activity indicators’, as well as

the combined-mean-forecast for ‘interest rates’. Since the multiple and one-factor specifications

for ‘all indicator’ and ‘real activity indicator’ appear in the MCSs across inflation measures

and subsamples, we have further evidence that the Phillips curve is a useful tool for inflation

forecasting. However, our results suggest that a Phillips curve (4) specification tied to macro

indicators other than unemployment yield better out-of-sample forecasts.

6 Summary and Concluding Remarks

In this paper, we have introduced the model confidence sets procedure (MCS). We discussed

the relation of the MCS to other approaches to model selection and multiple comparisons, and

we have established the asymptotic theory for the MCS. Further, we outlined a simple and

convenient bootstrap method for the implementation of the MCS procedure and have presented

Monte Carlo experiments that revealed good small sample properties of the MCS procedure.

As an empirical illustration of the MCS procedure, we applied the MCS to the forecasts of

inflation of Stock and Watson (1999). Our results showed that the MCS procedure provides

a powerful tool for evaluating competing inflation forecasts. We agree with Stock and Watson

that the Phillips curve yields good inflation forecasts, however we also emphasized that the

information content of the data matters for the conclusions that can be drawn. The great

inflation-disinflation subsample of 1970:m1 - 1983:m12 has movements in inflation and macro

variables that allows the MCS procedure to make sharp choices across the relevant models. The

information content of the 1984:m1 - 1996:m9 subsample is limited in comparison because the

MCS procedure lets in almost any model that Stock and Watson consider. The upshot is that

the question of what constitutes the best inflation forecasting model for the last 35 years of U.S.

data remains unanswered. We pursue this task in future research.
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In applications of the MCS procedure it is important to understand the principle of the pro-

cedure. The MCS is constructed such that inference about the ‘best’ follows the conventional

meaning of the word ‘significance’. While the MCS will only contain the best model(s) asymp-

totically, it may contain several poor models in finite samples, and this aspect should be kept

in mind in practice. The MCS procedure operates on a metric that discards a model only if it

is found to be significantly inferior to another model in the set. Thus a model remains in the

MCS until proven inferior. This is the reason that some models in the MCS may not be good

for forecasting, in much the same way that someone who is not convicted in court need not be

innocent.11

The MCS has a wide variety of uses. For example, Hansen, Lunde, and Nason (2003) have

used the MCS procedure determine the set of superior volatility models in an analysis of IBM

return data. We apply the MCS to the problem of choosing the best forecasting models. Our

empirical example employs the MCS procedure to revisit the Stock and Watson (1999) Phillips

curve forecasting exercise. Our results reveal the MCS points to Phillips curve models in our

search for the extracts the best set of forecasts of inflation. An important advantage of the

MCS, compared to other selection procedures, is that the MCS acknowledges the limits to the

informational content of the data. Given the large number of forecasting problems economists

face at central banks and other parts of government, in finance the markets, and in the academic

setting, the MCS procedure faces a rich set of problems to study.

A Bootstrap Procedure

The bootstrap implementation.

1. (Bootstrap indexes for resampling)

This is the first step because we need to use common random numbers for the bootstrap

resamples in each iteration of the sequential test.

(a) Choose the block-length bootstrap parameter, l. The optimal choice for l is tied to

the persistence in di·,t =m−1
P
j∈M0

dij,t, i = 1, . . . ,m, which is difficult to estimate
11 In future research, it would be interesting study the proportion of models in cM∗

1−α that are members ofM∗.

This issue is related to the false discovery rate and the q-value theory of Storey (2002). See McCracken and Sapp

(2003) for an application to comparisons of forecasting models.
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precisely when m is large. Instead one can use different choices for l, and verify that

the result is not sensitive to the choice.

(b) Generate B bootstrap resamples of {1, . . . , n}. I.e., for b = 1, . . . , B :
i. Choose ξb1 ∼ U{1, . . . , n} and set (τ b,1, . . . , τ b,l) = (ξb1 , ξb1 + 1, . . . , ξb1 + l − 1),
with the convention n+ i = i for i ≥ 1.

ii. Choose ξb2 ∼ U{1, . . . , n} and set (τ b,l+1, . . . , τ b,2l) = (ξb2 , ξb2+1, . . . , ξb2+ l−1).
iii. Continue until a sample size of n, is constructed.

iv. This is repeated for all resamples b = 1, . . . , B, using independent draws of the

ξ’s.

(c) Save the full matrix of bootstrap indexes.

2. (Sample and Bootstrap Statistics)

(a) For each model and each point in time we evaluate the performance to obtain the

variables Li,t, for i = 1, . . . ,m, and t = 1, . . . , n. These variables are used to calculate

the sample averages for each model L̄i,· ≡ 1
n

Pn
t=1Li,t, i = 1, . . . ,m.

(b) The corresponding bootstrap variables are now given by

L∗b,i,t = Li,τb,t , for b = 1, . . . , B, i = 1, . . . ,m, and t = 1, . . . , n.

and calculate the bootstrap sample averages, L̄∗b,i ≡ 1
n

Pn
t=1L

∗
b,i,t. The only variables

that need to be stored are L̄i and ζ̄
∗
b,i ≡ L̄∗b,i − L̄i, as all required statistics can be

calculated from these two variables.

3. (Sequential Testing) Initialize by settingM =M0.

(a) Let m denote the number of elements inM, and calculate

L̄· ≡ 1

m

mX
i=1

L̄i, ζ∗b,· =
1

m

mX
i=1

ζ∗b,i, and cvar(d̄i·) ≡ 1

B

BX
b=1

(ζ∗b,i − ζ∗b,·)2.

Now define ti· ≡ d̄i·/
pcvar(d̄i·) and calculate the test statistic TD = 1

m

Pm
i=1 t

2
i·.

(b) The bootstrap estimate of TD’s distribution is given by empirical distribution of

T ∗D,b =
1

m

mX
i=1

t∗2b,i·, for b = 1, . . . , B,

where t∗b,i· ≡ (ζ∗b,i − ζ∗b,·)/
pcvar(d̄i·).
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(c) The p-value of HM,0 is given by

p̂(m) ≡ 1

B

BX
b=1

1{TD>T ∗D,b},

where 1{·} is the indicator function.

(d) If p̂(m) < α, where α is the level the test, thenHM,0 is rejected and eM ≡ argmaxi ti·
is eliminated fromM.

(e) The steps in 3.(a)-(e) are repeated until first ‘acceptance’, and the resulting set of

models is denoted cM∗
1−α and and referred to as the (1− α) MCS.

A.1 Justification of bootstrap implementation

Let Zt = (d1·,t, . . . , dm·,t)0 then by Lemma 5 we have that n1/2(Z̄ − ψ) d→ Nm(0,Ω), where

Z̄ =
Pn
t=1Zt. Let Z

∗
b,t, t = 1, . . . , n and b = 1, . . . , B be generated by the stationary bootstrap

of Politis and Romano (1994). Since Zt has the properties of Assumption 3, it follows from

Goncalves and de Jong (2003) that n1/2(Z̄∗b − Z̄) d→ Nm(0,Ω) and Ω̂ ≡ n/B
PB
b=1(Z̄

∗
b − Z̄)(Z̄∗b −

Z̄)0 p→ Ω. Now it follows that

ζ∗b,i − ζ∗b,· = L̄∗b,i − L̄i −
1

m

mX
i=1

(L̄∗b,i − L̄i) = (L̄∗b,i − L̄∗b,·)− (L̄i − L̄·) = d̄∗b,i· − d̄i·,

such that the diagonal elements of Ω̂ are given by

n/B
BX
b=1

(Z̄∗b,i − Z̄i)2 = n/B
BX
b=1

(d̄∗b,i· − d̄i·)2 =
n

B

BX
b=1

(ζ∗b,i − ζ∗b,·)2 = cvar(n1/2d̄i·).
So under the null hypothesis the distribution of TD is approximated by that of

n1/2(Z̄∗b − Z̄)0D̂n1/2(Z̄∗b − Z̄) = (Z̄∗b − Z̄)0diag(cvar(d̄1·), . . . , cvar(d̄1·))(Z̄∗b − Z̄)
=

mX
i=1

(d̄∗b,i· − d̄i·)2cvar(d̄i·) =
mX
i=1

(ζ∗b,i − ζ∗b,·)2cvar(d̄i·) =
mX
i=1

(t∗b,i·)
2 = T ∗b,D.
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Table 1: Simulation Design I.

m = 10 m = 40 m = 100

Panel A: ϕ = 0

Frequency at whichM∗ ⊂ cM∗
90% (size)

ρ = 0 0.5 0.75 0.95 0 0.5 0.75 0.95 0 0.5 0.75 0.95

λ = 0 0.884 0.904 0.886 0.894 0.906 0.888 0.901 0.901 0.923 0.925 0.907 0.923
λ = 5 0.993 0.994 0.995 0.999 0.997 0.997 0.993 0.991 0.998 0.996 0.997 0.993
λ = 10 0.994 0.997 1.000 1.000 0.993 0.994 0.993 0.996 0.997 0.998 0.994 0.991
λ = 20 1.000 1.000 1.000 1.000 0.991 0.994 0.992 0.999 0.992 0.994 0.993 0.993
λ = 40 1.000 1.000 1.000 1.000 0.994 0.996 0.999 1.000 0.991 0.991 0.995 0.998

Average number of elements in cM∗
90% (power)

λ = 0 9.806 9.834 9.816 9.817 39.84 39.81 39.84 39.83 99.87 99.86 99.83 99.86
λ = 5 5.936 4.284 3.088 1.530 24.51 17.62 12.60 5.767 59.26 42.42 30.70 14.36
λ = 10 3.089 2.224 1.663 1.031 12.63 9.019 6.501 2.962 30.72 22.08 15.72 7.278
λ = 20 1.650 1.280 1.064 1.000 6.506 4.651 3.305 1.629 15.88 11.49 8.195 3.744
λ = 40 1.074 1.004 1.000 1.000 3.291 2.412 1.784 1.054 8.112 5.796 4.216 1.970

Panel B: ϕ = 0.5

Frequency at whichM∗ ⊂ cM∗
90% (size)

ρ = 0 0.5 0.75 0.95 0 0.5 0.75 0.95 0 0.5 0.75 0.95

λ = 0 0.927 0.920 0.906 0.927 0.957 0.960 0.962 0.964 0.992 0.989 0.992 0.990
λ = 5 0.990 0.993 0.997 1.000 0.999 0.995 0.995 0.991 0.998 0.999 0.999 0.996
λ = 10 0.996 0.999 1.000 1.000 0.994 0.994 0.994 0.996 0.999 0.996 0.995 0.994
λ = 20 1.000 1.000 1.000 1.000 0.994 0.995 0.993 1.000 0.997 0.995 0.992 0.992
λ = 40 1.000 1.000 1.000 1.000 0.997 0.997 0.999 1.000 0.995 0.994 0.995 1.000

Average number of elements in cM∗
90% (power)

λ = 0 9.886 9.889 9.856 9.886 39.94 39.93 39.94 39.95 99.99 99.99 99.99 99.98
λ = 5 5.814 4.162 2.948 1.500 24.56 17.72 12.63 5.774 61.77 44.24 31.46 14.32
λ = 10 2.958 2.195 1.614 1.052 12.63 8.975 6.416 2.931 31.61 22.29 15.98 7.213
λ = 20 1.650 1.290 1.075 1.000 6.432 4.583 3.212 1.578 16.03 11.33 8.079 3.605
λ = 40 1.067 1.011 1.001 1.000 3.272 2.321 1.730 1.064 7.994 5.696 4.066 1.926

Panel C: ϕ = 0.8

Frequency at whichM∗ ⊂ cM∗
90% (size)

ρ = 0 0.5 0.75 0.95 0 0.5 0.75 0.95 0 0.5 0.75 0.95

λ = 0 0.955 0.962 0.953 0.967 0.994 0.994 0.995 0.994 1.000 1.000 1.000 1.000
λ = 5 0.996 0.999 1.000 1.000 0.998 0.996 0.997 0.997 1.000 0.999 0.999 0.998
λ = 10 0.999 1.000 1.000 1.000 0.997 0.996 0.997 1.000 0.998 0.997 0.997 0.995
λ = 20 1.000 1.000 1.000 1.000 0.995 0.998 0.998 1.000 0.996 0.996 0.997 0.999
λ = 40 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000 0.996 0.998 0.998 1.000

Average number of elements in cM∗
90% (power)

λ = 0 9.934 9.940 9.931 9.956 39.99 39.99 39.99 39.99 100.0 100.0 100.00 100.0
λ = 5 4.259 3.148 2.315 1.306 18.94 13.72 9.959 4.441 48.15 35.33 25.14 11.62
λ = 10 2.330 1.741 1.414 1.058 9.850 6.975 4.944 2.269 25.66 17.87 12.75 5.614
λ = 20 1.389 1.198 1.078 1.014 4.914 3.535 2.504 1.373 12.56 8.992 6.422 2.833
λ = 40 1.076 1.022 1.009 1.003 2.511 1.870 1.450 1.081 6.459 4.309 3.122 1.558

The two statistics are the frequency at which cM∗
90% containsM∗ and the other is the average

number of models in cM∗
90%. The former shows the ‘size’ properties of the MCS procedure and

the latter is informative about the ‘power’ of the procedure.
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Table 2: Simulation Design II.

m = 10 m = 40 m = 100

Panel A: n = 250

Frequency at whichM∗ ⊂ cM∗
90% (size)

ρ = 0 0.5 0.75 0.95 0 0.5 0.75 0.95 0 0.5 0.75 0.95

λ = 0 0.874 0.880 0.882 0.888 0.833 0.879 0.914 0.927 0.833 0.905 0.945 0.957
λ = 5 0.991 0.993 0.994 0.996 0.992 0.993 0.996 0.994 0.992 0.998 0.995 0.998
λ = 10 0.992 0.995 0.998 1.000 0.994 0.994 0.991 0.996 0.995 0.997 0.998 0.994
λ = 20 0.999 0.999 1.000 1.000 0.990 0.990 0.995 0.996 0.988 0.994 0.993 0.996
λ = 40 1.000 1.000 1.000 1.000 0.996 0.996 0.997 1.000 0.991 0.987 0.990 0.994

Average number of elements in cM∗
90% (power)

λ = 0 9.738 9.770 9.789 9.809 39.58 39.73 39.82 39.87 99.49 99.75 99.87 99.93
λ = 5 6.530 5.873 4.661 2.750 25.58 23.20 18.43 10.17 61.07 55.93 44.34 24.65
λ = 10 3.517 3.072 2.483 1.604 13.83 12.12 9.665 5.314 32.51 29.04 23.24 12.72
λ = 20 1.846 1.659 1.416 1.110 7.293 6.376 5.080 2.940 17.02 15.10 12.03 6.629
λ = 40 1.143 1.094 1.032 1.002 3.794 3.280 2.624 1.674 9.125 7.863 6.332 3.527

Panel B: n = 1000

Frequency at whichM∗ ⊂ cM∗
90% (size)

ρ = 0 0.5 0.75 0.95 0 0.5 0.75 0.95 0 0.5 0.75 0.95

λ = 0 0.888 0.891 0.892 0.906 0.894 0.894 0.912 0.912 0.890 0.903 0.915 0.930
λ = 5 0.990 0.996 0.994 0.997 0.998 0.995 0.998 0.994 0.997 0.998 0.998 0.997
λ = 10 0.992 0.995 0.998 0.999 0.993 0.993 0.992 0.993 0.998 0.996 0.997 0.996
λ = 20 0.998 0.998 0.999 1.000 0.993 0.993 0.991 0.998 0.996 0.994 0.993 0.996
λ = 40 1.000 1.000 1.000 1.000 0.993 0.994 0.991 1.000 0.995 0.994 0.992 0.994

Average number of elements in cM∗
1−α

λ = 0 9.792 9.809 9.824 9.842 39.80 39.80 39.83 39.84 99.73 99.79 99.83 99.87
λ = 5 7.962 7.364 6.050 3.232 32.43 29.55 23.97 12.68 79.18 72.06 58.09 30.42
λ = 10 4.600 4.021 3.159 1.754 18.50 16.14 12.63 6.644 44.13 38.44 30.21 15.91
λ = 20 2.370 2.122 1.730 1.151 9.584 8.427 6.576 3.524 23.07 20.28 15.83 8.177
λ = 40 1.358 1.246 1.096 1.001 5.005 4.352 3.393 1.923 12.15 10.52 8.277 4.346

The two statistics are the frequency at which cM∗
90% contains M∗ and the other is the average

number of models in cM∗
90%. The former shows the ‘size’ properties of the MCS procedure and

the latter is informative about the ‘power’ of the procedure.
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Table 3: MCS p-values for Stock and Watson JME (1999) table 2.

PUNEW GMDC

1970-1983 1984-1996 1970-1983 1984-1996

Variable Trans RMSE pmcs RMSE pmcs RMSE pmcs RMSE pmcs

No change 3.290 0.001 2.140 0.008 2.208 0.015 1.751 0.000

uniar - 2.675 0.002 1.360 0.778? 1.941 0.033 1.082 0.413?

’Gaps’ specifications

dtip DT 2.519 0.013 1.310 0.781? 1.913 0.074 1.043 0.549?

dtgmpyq DT 2.644 0.001 1.446 0.101? 2.067 0.006 1.103 0.239?

dtmsmtq DT 2.341 0.089 1.280 0.848? 1.844 0.083 1.007 0.969?

dtlpnag DT 2.482 0.029 1.323 0.778? 2.024 0.020 1.012 0.969?

ipxmca LV 2.373 0.066 1.264 1.000? 1.887 0.083 1.026 0.969?

hsbp LN 2.205 0.682? 1.392 0.663? 1.829 0.083 0.993 1.000?

lhmu25 LV 2.433 0.052 1.401 0.402? 1.937 0.041 1.055 0.763?

First difference specifications

ip DLN 2.384 0.060 1.429 0.244? 1.819 0.083 1.115 0.064

gmpyq DLN 2.233 0.653? 1.532 0.039 1.565 1.000? 1.149 0.129?

msmtq DLN 2.169 1.000? 1.353 0.774? 1.778 0.083 1.062 0.491?

lpnag DLN 2.308 0.124? 1.317 0.781? 1.809 0.083 1.009 0.969?

dipxmca DLV 2.355 0.066 1.456 0.068 1.839 0.083 1.128 0.035

dhsbp DLN 2.701 0.004 1.405 0.496? 1.969 0.021 1.077 0.450?

dlhmu25 DLV 2.352 0.080 1.474 0.026 1.878 0.083 1.103 0.095

dlhur DLV 2.321 0.153? 1.451 0.139? 1.843 0.083 1.088 0.316?

Phillips curve

LHUR 2.387 0.060 1.371 0.582? 1.939 0.059 1.050 0.602?

The Table report the RMSE’s and the MCS p-values for the different forecasting models for US inflation.

The p-values that are marked with an ? are those in cM∗
90%. The results of this table correspond to those

of S&W (1999, table 2).
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Table 4: MCS p-values for Stock and Watson JME (1999) Table 4.

PUNEW GMDC

1970-1983 1984-1996 1970-1983 1984-1996

Variable RMSE pmcs RMSE pmcs RMSE pmcs RMSE pmcs

No change 3.290 0.001 2.140 0.020 2.208 0.013 1.751 0.004
Univariate 2.675 0.001 1.360 0.617? 1.941 0.025 1.082 0.199?

Panel A. All indicators

Mul. factors 2.158 0.222? 1.291 0.998? 1.894 0.132? 0.964 0.631?

1 factor 2.069 0.610? 1.274 1.000? 1.692 1.000? 1.002 0.602?

Comb. mean 2.439 0.002 1.289 0.999? 1.853 0.162? 1.036 0.543?

Comb. median 2.550 0.002 1.316 0.981? 1.895 0.115? 1.063 0.442?

Comb. ridge reg. 2.209 0.023 1.280 0.999? 1.842 0.193? 1.019 0.543?

Panel B. Real activity indicators

Mul. factors 2.019 1.000? 1.357 0.775? 1.792 0.202? 0.946 1.000?

1 factor 2.079 0.610? 1.281 0.999? 1.753 0.234? 1.017 0.543?

Comb. mean 2.346 0.004 1.284 0.999? 1.807 0.202? 1.020 0.543?

Comb. median 2.381 0.002 1.299 0.994? 1.831 0.193? 1.036 0.506?

Comb. ridge reg. 2.192 0.084 1.298 0.994? 1.773 0.234? 1.022 0.543?

Panel C. Interest rates

Mul. factors 2.585 0.002 1.495 0.205? 1.976 0.036 1.173 0.069
1 factor 2.524 0.004 1.495 0.117? 2.038 0.007 1.077 0.356?

Comb. mean 2.424 0.008 1.341 0.883? 1.900 0.100? 1.079 0.184?

Comb. median 2.513 0.002 1.336 0.941? 1.912 0.055 1.078 0.300?

Comb. ridge reg. 2.432 0.008 1.368 0.454? 1.943 0.029 1.123 0.106?

Panel D. Money

Mul. factors 2.679 0.001 1.360 0.462? 1.933 0.032 1.080 0.218?

1 factor 2.679 0.001 1.360 0.544? 1.933 0.047 1.080 0.254?

Comb. mean 2.664 0.001 1.350 0.700? 1.964 0.020 1.066 0.486?

Comb. median 2.670 0.001 1.348 0.789? 1.954 0.021 1.070 0.409?

Comb. ridge reg. 2.638 0.001 1.385 0.390? 1.934 0.074 1.121 0.151?

Phillips curve

LHUR 2.387 0.004 1.371 0.437? 1.939 0.060 1.050 0.543?

The Table report the RMSE’s and the MCS p-values for the different forecasting models for US inflation.
The p-values that are marked with an ? are those in cM∗

90%. The results of this table correspond to those
of S&W (1999, table 4).
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